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Invariant Star-Product on a Poisson-Lie Group and 
h-Deformation of the Corresponding Lie Algebra 

M. M a n s o u r  ~ 
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In this paper we prove that a lefi-invariant star-product on a Poisson-Lie group 
leads to the quantum Lie algebra structure on the corresponding Lie algebra of 
the Lie group. 

1. INTRODUCTION 

A great deal of attention and effort has recently been devoted in theoreti- 
cal physics to the mathematical structures referred to as quantum groups 
(Drinfeld, 1987; Jimbo, 1985, 1989; Manin, 1988). 

The interest in quantum groups arise almost simultaneously in statistical 
mechanics as well as in conformal theories, in solid-state physics as well as 
in the study of topologically nontrivial solutions of nonlinear equations, so 
that the research in quantum groups grew along parallel lines from physical 
as well as mathematical problems. 

As it is well known, quantum groups can be seen as a noncommutative 
generalization of topological spaces which have a group structure; such a 
structure induces an abelian Hopf algebra (Abe, 1980) structure on the algebra 
of functions defined on the group. 

Quantum groups are defined then as a non-abelian Hopf algebra (Takhta- 
jan, 1989). A way to generate them consists in deforming the product of an 
abelian Hopf algebra into a non-abelian one (*-product) using the so-called 
quantization by the deformation procedure or star-quantization (Bayen et  al., 
1978a, b). This quantization technique gives a deformed product once it is 
assigned a Poisson bracket on the algebra of functions on the group. 
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Classical r-matrices (Drinfeld, 1983a; Semenov-Tian-Shansky, 1985; Lu 
and Weinstein, 1990) play a very important role in the theory of quantum 
groups. They are closely related to the structure of a Poisson-Lie group 
which appears as the classical limit of a quantum group. 

The present paper is organized as follows. In Section 2 a brief review 
is given on the relation between an invariant star-product and the quantum 
Yang-Baxter equation (QYBE). Section 3 gives the basic definitions of  quan- 
tum Lie algebra and quantum Killing form. Section 4 shows that the invariant 
star-product on a Poisson-Lie group G leads to the structure of a quantum 
Lie algebra on the corresponding Lie algebra of the Lie group. Finally, Section 
5 deals with the case of s/(2) in an explicit way. 

2. THE STAR-PRODUCT AND QYBE 

Let A t be the left-invariant Poisson structure on a Lie group G defined 
by the element r E (g A g) (Moreno and Valero, 1992) (g is the Lie algebra 
of G), which satisfies the classical Yang-Baxter equation: 

[r 12, r 13] + [r 12, r 23] + [r 13, r 23] = 0 (2.1) 

i.e., 

At(g) = TeL~r, Vg ~ G (2.2) 

where Lg is the left translation of G, and T~Lg is the tangent map of Lg in e 
(unit element of G). 

A left-invariant star-product on G is a deformation of the associative 
algebra C~(G) of C-~-functions on G with respect to the usual product, 
defined as 

r  -- q~'O + h{q~,t~} l + ~ hnCn(q~,dJ) 
n=2 

(2.3) 

where q~.~b is the usual multiplication of functions q~, # ~ C ~ (G), {., �9 }l is 
the Poisson bracket corresponding to the 2-tensor A t, C~ is a left-invariant 
bidifferential operator on G such that 

(i) C~(1, q~) = Ci(~, l) = 0 

(ii) Ci(q~, 0) = (-1)/C~(*, q~) 

Vcp e C~(G) (2.4) 

Vq~,, ~ C~(G) (2.5) 

and Vq~, O, • e C~~ we have 

q~ ,l (~ ,t  X) = (q~ ,t ~) ,l  X (2.6) 
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Moreno and Valero (1992) and Drinfeld (1983b) prove that the Ci (~p, r is 
given by 

Ci(qo, r = (Fi(x, y))16p Q ~) (2.7) 

where (Fi (x, y))l is the left-invariant bidifferential operator determined by 
F,(x, y) ~ ~'(~ ) Q ~'(~ ). 

Thus, the */-product (left invariant star-product) becomes the element 

F(x, y )=  1 + 2 F,,(x, y)h n 
n = l  

in ~/(e) ~) ~/(~)[[h]] such that 

F(x + y, z)F(x, y) = F(x, y + z)F(y, z) (2.8) 

Then, the element (Drinfeld, 1983b) 

S(x, y) = F-l(y,  x)F(x, y) (2.9) 

satisfies 

S (x, y)S (x, z)S (y, z) = S (y, z)S (x, z)S (x, y) 

S(x, y)S(y, x) = 1 

i.e., S (x, y) satisfies the triangular QYBE. 

(2.10) 

(2.11) 

3. D E F O R M A T I O N  O F  T H E  L I E  A L G E B R A  

We recall that a Lie algebra g is a vector space endowed with a bilin- 
ear map 

[,]: : |  

such that 

(1) [ , 1  = - [ ,  ] oa- 

(2) [ ,  ]([, ] ~) id)(id + "i"12"I .23 -I- '1"23'I" 12) = 0. 

Furthermore, the Killing form on g is a bilinear map 

( , ) :  ~ (~):  --->K 

such that 

(i) 

(ii) 

<, )=<,>o . r  

( , )([ ,  ] ~) id)(id + "1 "23) = 0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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where x is the transposition operator 

( a Q b )  ~ b |  

and 

(3.5) 

a "23 = 1 | "r, '1 '12 = "r | 1 E End(~ |  |  (3.6) 

Here we define a structure of the quantum Lie algebra on g called the S-Lie 
algebra (Gurevich and Rubstov, 1990; Gurevich, 1990) as a bilinear map 
from ~,, | ,~ to ~ [[hi] given by 

[ ,  Is: ~ | ~ ~,~ [[h]] 

such that 

(1) 

(2) 

[ ,  ]s = - [ ,  1~ ~ S (3.7) 

[ ,  ]s([, ]~ | id)(id + S 12S23 -I- $23S 12) ~-- 0 (3.8) 

where 

S = "t + ~ hiSi, Si ~ End(r |  (3.9) 
i~l 

satisfies the quantum Yang-Baxter equation 

S 12S23512 = S23S12S 23 (3.10) 

and reduces to "r when h = 0. 
The quantum Killing form on y is defined as a bilinear map 

( , ) s :  ~" | .~ --'> K[[h]] 

such that 

(1)  ( , ) s  = (,)~ o s (3 .11)  

(2) ( , ) s ( [ ,  l | id)(id + S 23) = 0 (3.12) 

where S in (3.1 1) and (3.12) is the same as the S given in (3.9). 

4. INVARIANT S T A R - P R O D U C T  AND D E F O R M A T I O N  OF T H E  
LIE A L G E B R A  

Let F(x, y) E ~ ( y )  | ~/(g)[[h]]  be a , l  product on G, this implies that 

F(x  + y, z)F(x, y) = F(x, y + z)F(y,  z) (4.1) 

h 
F - -  1 + ~ r +  0(h2) (4.2) 
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where r is a solution of  the triangular classical Yang-Baxter equation, i.e., 
r ~ ,~ ^ 0, C ~ t~) ,, and satisfies the following equation: 

[r 12, r 13] + [r t2, r 23] + [r  13, r 23] = 0 (4.3) 

where r 12 = r (~) 1 ~ ~/(C)| and so on. ~(C) denotes the universal envel- 
oping algebra. 

The inverse of  F is given by 

h 
F -I = 1 - ~  r + 0(hE). (4.4) 

Let p be the adjoint representation o f ~  in End(c ) and define 

F" = (p (~) p)F ~ End(c ~)~)[ [h] ]  (4.5) 

given explicitly by 

where 

h 
f = l @ l  + ~ R +  O(h 2) (4.6) 

R = (p (~) p)r, 0(h 2) = (p | p)0(h 2). (4.7) 

In terms of a basis {Xi} o f ~ ,  write r = r ij X i ~ Xj (summation under repeated 
indices is understood) and for x, y ~ ~ ,  we have 

h 
F(x (~ y) = x Q y + ~ r'J[x,, x] (~ [xp y] + O(x, y, h 2) (4.8) 

the inverse p -1  is given by 

h 
F-l (X (~ y) -~ X @ y -- ~ riJ[xi, x] (~ [xj, y] + O(x, y, h 2) (4.9) 

We also define 

= (p (~) p)(Z o S) = (p (~) p)(F-I.F2t) = p - t  o Z o F (4.10) 

such that for any x, y e ~ ,  we have at the first order 

S ( x , y ) = y ( ~ x -  h~J[xi, y ] (~[x j ,  x] + O(x,y,  h2). (4.11) 

Then by an easy calculus we can show that S satisfies the quantum Yang- 
Baxter equation 

S12S23S12 = S23,~12S23. (4.12) 
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Indeed at the first order we obtain that 

S12S23S12(x (~ y ~ z) = z t~  y (~ x - hrq([xi, z] (~ [xj, y] (~ x 

+ [xi, z] Q y Q  [xj, x] + z |  [xi, y] (~) [xj, x]) 

+ 0(x, y, h 2) (4.13) 

and 

$23S12S23(x (~ Y ~ z) = z ~ y (~ x - hriJ(z Q [xi, y] ~ [xj, x] 

+ [xi, z] @ y Q  [xj, x] + [xi, z] (~ [xj, y] |  

+ 0(x, y, h 2). (4.14) 

Now using the S-matrix, we can define a quantum Lie algebra structure on 
the corresponding Lie algebra t .  Then if we introduce [ ,  ]z as 

[ ,  ]~ = [ ,  ] o ig" (4.15) 

where [ ,  ] is the classical one, we have for any x, y �9 

[ ,  ] ~ x |  = [ , ] o P ( x |  

= [x, y] + -~ r 0 [xi, x], [xj, y] rood h 2. (4.16) 

First, using the fact that ~2 = id, we obtain that 

[ ,  ]~ = - [ ,  ]go g. (4.17) 

Second, using the fact that [ ,  ] satisfies the classical Jacobi identity and that 
r is a solution of the classical Yang-Baxter equation, we can show that 
[ ,  ]~, satisfies the following quantum Jacobi identity: 

[ ,  1~ ([ ,  1~ | id)(id + g12923 + ~3gn) = 0. (4.18) 

If we define the quantum Killing form as 

( ,  }~ = ( , )  o p (4.19) 

where ( ,  } is the classical one, such that for any x, y �9 ,~ that we obtain, 

h 
(x, y}~ = (x, y) + ~ r ij ([xi, xl, Ix.i, Yl} + O(h 2) (4.20) 

then we can easily show that 

( , ) e  = ( , ) , o  g. (4.21)' 
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Using the fact that ( , )  is ad:-invariant, we can prove that 

( , ) ~ [ ,  ] ~) id)(id Q ~3) = 0. (4.22) 

5. STAR-PRODUCT ON SL(2,C) AND h-DEFORMATION OF 
THE s/(2) 

Let G = SL(2, C); the corresponding Lie algebra sl(2) is generated by 
X, Y, H such that 

[X, Y] = H (5.1) 

[X, H] = 2X (5.2) 

[Y, H] = -2Y. (5.3) 

A solution of the classical Yang-Baxter equation is 

r = H ^ X ~ A2(s/(2)). (5.4) 

An invariant star-product on SL(2, C) is given by (Ohn, 1992) 

F = exp ~ AH - ~ rt ~ -  (~) e -hx + e hx t~ H hX ] sinh-~--AX) 

where A is the usual comultiplication on the enveloping algebra U(sl(2)). 
This implies that: 

[1 1 ( ~ sinh(hX') P = e x p  (~(~)1 + 1 ( ~ ) ~ - ~  H ~ (~)e -h~ 

" ~ k A X  
+ e ~  (~) H s l ~ h X ) )  sinh--~-Ag~) ] 

where 

/~ = p (n ) ,  ;~ = p(X), ? = p(Y). 

Then, the quantum Lie algebra structure on s/(2) is given by 

[X, H]e = [ ,  ] o F(X (~) H) 

=(2X) modh 2 

[Y, H]x = [ ,  ] o F(Y (~) H) 

= ( 2 Y - 2 h H )  modh 2 

[x, r b =  [, ] o P(X | r3 

= ( H - 2 h X )  modh2. 

(5 .5)  

(5.6) 

(5.7) 

(5 .8)  



3014 Mansour 

The quantum Killing form on sl(2) is as follows: 

(X, Y)r = ((X, Y) - h(X, H) )  mod h 2 

(H, X)g = ((H, X )  + 2h(X, X) )  mod h 2 

(H, Y)g = ((H, Y) + 2h(X, Y)) rood h 2 

(5.9) 

(5.10) 

(5.11) 

6. C O N C L U S I O N  

An h-deformation o f  a bialgebra as an algebra is given by an invariant 
star-product on the associated connected and simply connected Po isson-  
Lie group. 
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